Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Transl Med ; 12(9): e1025, 2022 09.
Article in English | MEDLINE | ID: covidwho-2027333

ABSTRACT

BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacology
2.
Phytother Res ; 36(8): 3232-3247, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1976773

ABSTRACT

The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 µg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 µg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.


Subject(s)
COVID-19 Drug Treatment , Influenza A Virus, H5N1 Subtype , Antiviral Agents/pharmacology , Humans , Pandemics/prevention & control , SARS-CoV-2
3.
Clin Infect Dis ; 73(11): e4154-e4165, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559099

ABSTRACT

BACKGROUND: Children and older adults with coronavirus disease 2019 (COVID-19) display a distinct spectrum of disease severity yet the risk factors aren't well understood. We sought to examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. METHODS: We retrospectively analyzed clinical features in a cohort of 299 patients with COVID-19. The expression and distribution of ACE2 and lung progenitor cells were systematically examined using a combination of public single-cell RNA-seq data sets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults. We also followed up patients who had recovered from COVID-19. RESULTS: Compared with children, older patients (>50 years.) were more likely to develop into serious pneumonia with reduced lymphocytes and aberrant inflammatory response (P = .001). The expression level of ACE2 and lung progenitor cell markers were generally decreased in older patients. Notably, ACE2 positive cells were mainly distributed in the alveolar region, including SFTPC positive cells, but rarely in airway regions in the older adults (P < .01). The follow-up of discharged patients revealed a prolonged recovery from pneumonia in the older (P < .025). CONCLUSIONS: Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract. The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-Cov-2 infection in older patients.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Stem Cells , Aged , Child , Humans , Lung/cytology , Middle Aged , RNA-Seq , Retrospective Studies , Severity of Illness Index
4.
Cell Host Microbe ; 29(4): 551-563.e5, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1101147

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a burst in the upper respiratory portal for high transmissibility. To determine human neutralizing antibodies (HuNAbs) for entry protection, we tested three potent HuNAbs (IC50 range, 0.0007-0.35 µg/mL) against live SARS-CoV-2 infection in the golden Syrian hamster model. These HuNAbs inhibit SARS-CoV-2 infection by competing with human angiotensin converting enzyme-2 for binding to the viral receptor binding domain (RBD). Prophylactic intraperitoneal or intranasal injection of individual HuNAb or DNA vaccination significantly reduces infection in the lungs but not in the nasal turbinates of hamsters intranasally challenged with SARS-CoV-2. Although postchallenge HuNAb therapy suppresses viral loads and lung damage, robust infection is observed in nasal turbinates treated within 1-3 days. Our findings demonstrate that systemic HuNAb suppresses SARS-CoV-2 replication and injury in lungs; however, robust viral infection in nasal turbinate may outcompete the antibody with significant implications to subprotection, reinfection, and vaccine.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Turbinates/virology , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Cricetinae , Female , HEK293 Cells , Humans , Male , Mesocricetus , Viral Load
5.
Theranostics ; 11(5): 2170-2181, 2021.
Article in English | MEDLINE | ID: covidwho-1016389

ABSTRACT

Introduction: An increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. Methods: We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020. We systematically examined the expression and distribution of ACE2 in different developmental stages of children by using a combination of children's lung biopsies, pluripotent stem cell-derived lung cells, RNA-sequencing profiles, and ex vivo SARS-CoV-2 pseudoviral infections. Results: It revealed that infants (< 1yrs.-old), with a weaker potency of immune response, are more vulnerable to develop pneumonia whereas older children (> 1 yrs.-old) are more resistant to lung injury. The expression levels of ACE2 however do not vary by age in children's lung. ACE2 is notably expressed not only in Alveolar Type II (AT II) cells, but also in SOX9 positive lung progenitor cells detected in both pluripotent stem cell derivatives and infants' lungs. The ACE2+SOX9+ cells are readily infected by SARS-CoV-2 pseudovirus and the numbers of the double positive cells are significantly decreased in older children. Conclusions: Infants (< 1 yrs.-old) with SARS-CoV-2 infection are more vulnerable to lung injuries. ACE2 expression in multiple types of lung cells including SOX9 positive progenitor cells, in cooperation with an unestablished immune system, could be risk factors contributing to vulnerability of infants with COVID-19. There is a need to continue monitoring lung development in young children who have recovered from SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/cytology , Stem Cells/metabolism , Adolescent , Biopsy , Child , Child, Preschool , Female , Humans , Immune System , Infant , Infant, Newborn , Lung/virology , Male , RNA-Seq , Risk Factors , SARS-CoV-2 , SOX9 Transcription Factor/metabolism , Single-Cell Analysis , Stem Cells/virology
6.
Emerg Microbes Infect ; 9(1): 1664-1670, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-630769

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a wide spectrum of disease severity from mild upper respiratory symptoms to respiratory failure. The role of neutralizing antibody (NAb) response in disease progression remains elusive. This study determined the seroprevalence of 733 non-COVID-19 individuals from April 2018 to February 2020 in the Hong Kong Special Administrative Region and compared the neutralizing antibody (NAb) responses of eight COVID-19 patients admitted to the intensive care unit (ICU) with those of 42 patients not admitted to the ICU. We found that NAb against SARS-CoV-2 was not detectable in any of the anonymous serum specimens from the 733 non-COVID-19 individuals. The peak serum geometric mean NAb titer was significantly higher among the eight ICU patients than the 42 non-ICU patients (7280 [95% confidence interval (CI) 1468-36099]) vs (671 [95% CI, 368-1223]). Furthermore, NAb titer increased significantly at earlier infection stages among ICU patients than among non-ICU patients. The median number of days to reach the peak Nab titers after symptoms onset was shorter among the ICU patients (17.6) than that of the non-ICU patients (20.1). Multivariate analysis showed that oxygen requirement and fever during admission were the only clinical factors independently associated with higher NAb titers. Our data suggested that SARS-CoV-2 was unlikely to have silently spread before the COVID-19 emergence in Hong Kong. ICU patients had an accelerated and augmented NAb response compared to non-ICU patients, which was associated with disease severity. Further studies are required to understand the relationship between high NAb response and disease severity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Adult , Aged , COVID-19 , Cells, Cultured , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL